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Abstract 
Nomenclature

Maneuvering aircraft continuously

operate in the regime of rapidly changing,

time-dependent flow fields and it is well

establistied that certain predictable and C Nondimensonal chord Posltiong

controlled unsteady flows enhance aircraft measured from the wing leading edge

maneuvering capability. However, any

attempt to apply unsteady flow mechanisms Cn Force coefficient normal to the
to inflight vehicles must be preceded by a chord line

thorough analysis of the basic fluid

dynanics of unsteady leading edge and k Nondimensiondl reduced frequency

wingtip vortices. This study focuses on parameter, k - wc/2V.

tne vortex-vortex interactive region

produced on a rectangular wing when S Nondimensional spanwise distance
oscillating through sinusoidal motions from the wingtip (distance/c)

about the quarter chord. Since flow

visualization permits initial qualitative V Local absolute velocity measured

investigation of complex flow structures, at the notwire probe position

pnase-locked, stroboscopic photography was

utilized for initial data collection. V. Freescream velocity
Quantitative data were collected using

hotwire anemomecry and surface pressure a Instantaneous geometric angle

measurewents. The flow visualization o attack (degrees)

analyses across the span of the wing snow
repeatable patterns of leading edge and a Mean angle of attack (degrees)

wingtip vortex size, development, position
and convection velocity throughout the a Oscillation amplitude (degrees)

pitching cycle. These dynamic fluid

characteristics are confirmed and Nondimensional oscillation phase

partially quantified using hotwire probe angle (% cycle)

velocities and surface pressure

measurements. A reasonably thorougn Rotational frequency in radians
aaalysis of this phenomenon is now per second

feasible. A representative sampling of

the data is presented along with the Introduction

hypotheses formed and confirmed during the

three investigations. These experiments To fully comprehend tne flight

provide an initial data base for characteristics and maneuvering potential

comparison and validation of computational of agile aircraft in an air-to-air

codes for the prediction of force and environment, we must understand the

moment information about a dynamic control unsteady phenomena affecting these highly

surface. dynamic vehicles. Control surface forces

and moments in this unsteady environment
depend on vortex production, strength,

*Lt Col, USAF loiter time on the wing and vortex-vortex

interactions. Omission of vortex dynamicsA~sciae Pofesorof eroautcsfrom the analysis of these dynamic flows

U. S. Air Force Academy, Colorado Spgs, Co wou lea to er es dic that
Mebr IAwould lead to erroneous predictions that

Member AIAA could cause catastrophic results.

"Captain, USAF Incorporation of unsteady aerodynamic

Assistant Professor of Aeronautics, technology into advanced aircraft design
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The current technology of horizontally from tie side wall or tne

computational techniquesl-
5 
provides a tunnel and was oscillated about the

prediction capability that was quarter cnord line. The trequency of tne

unattainable only a few years ago. sinusoidal oscillations was set to

However, even now, code validation maintain a reduced frequency, k, of 1.0.

requires comparison with some verified The mean angle of oscillation was 150 and

quantity of reliable experimental data. tae oscillation amplitude was +10'
.

Experimental results on unsteady flow During the flow visualization tests, a

fields about two-dimensional airfoils 35mw camera and phase-locked strcboscopic

began with investigations in rotor blade (10 usec duration) flash unit were used to
aerodynamics

6 
and prog~esse into possible record the multiple exposure

lift enhancement studies
7 - 9

. Since photographs
1 1 - 1 3

. A smoke wire suspended

operational wings are necessarily three- between top and bottom of the tunnel was

dimensional, the unsteady flow studies used to produce vertical smoke sheets at

continued into three-dimensions including the desired span location or toe each

oscillating motionsl
0 -[ 5

, accelerating wing. Spanwise investigations were

fiowslO and nigh rate pitching motions
1 7 -  

cunducted by positioning the smoke wire at
22. Also, experimental investigations

2 3 -  
different intervals along the span of the

24 into the feasibility or applying wing.

unsteady flow technology to actual
aircratt appear promising. The Hotwire anemometry data was recorded

investigation discussed nere explores the at dynamic conditions ideatic-1 to tne

intricate flow patterns or and provides flow visualization investigations. Tne

insight into the three-dimensional tlow notwire probe was positioned in a

characteristics of the leading edge and horizontal plane 1/4 inch above the

wingtip vortex interactive region on a quarter chord of the wing to avoid contact

pItcning wing. with the wing during the pitching motion.

Seven equally spaced chordwise positions

This arnalysis combines flow were tested from the leading edge to mhe

visualization, hotwire anemometry and trailing edge. The spanwise probe

surtace pressure measurements to derine locations were identical to tnose used tor

the unsteady flow field and vortex-vortex the flow visualization data. Velocity

interaction. The qualitative flow data for ten complete pitching cycles were

visualization data was recorded using a computer averaged and plotted. Each run

smoke wire technique. This data collected over 200 temporal data points

illustrates the position and size of the and plotted the average velocity trace for

leading edge and wingtip vortices ten cycles. Data were compared to the

throughout the pitching cycle. Hotwire tunnel freestream velocity. The pitcning

measurements above the upper wing surface cycle be gins with the wing at the maimum

provide quantitative velocity measurements angle of attack.

across the chord and span or tne wing. Surface pressure data was collecteo

Since the hotwira probe positions must be
with the wing in the Frank J. Seller

above the ocillating wing, and since the Research Laboratory 3 X 3 toot low speed
directionality of unsteady flows vary, wind tunnel at the United States Air Force

surtace pressure measurements are

necessary to more accurately quantify the Academy. The data was recorded using 15

flow affecting tie wing. The pressure surface mounted pressure transducers on
one side of the wing. Complete surface

data indicate the vortex position and the dat s obtne binverting he wing

magnitude or the surtace velocities as
well as how their characteristics change and reversing the direction of
well as ow thepitcharactycleticschanee oscillation. The wing is equipped with
thrOughout the pitching cycle. Tne upper interchangeable wingtip lengths to allow a

and lower surface pressure distributions
spanwise investigation or the pressureare integrated to give the cyclic normal distribution. The data was collected,

force coefficient history. This data base digitized, and stored using a Masscomp
will aid the computational integration 5500 data acquisition system. The data

required for aerodynamic prediction of the acquisition equipment and calibration
forces and moments produced by three- technique are discussed in detail

dimensional unsteady flows. elsewhere
20

. The pressure port locations

and model scnematic are shown in Fig. 1.

Methods The data is presented here as time-
dependent pressure contour plots aad

Initial flow visualization and normal force coefficients for each wing

hotwire data were taken in the 16 X 16 span location.

inch, low speed wind tunnel at the
University of Colorado. The tunnel
velocity was sdt to maintain a Reynold's Results

nu-'ber of 40,.92 based on the wing
cnordlengtn. The Plexiglas wind tunnel Complete analysis of the unsteady

side wall and top allow ortnogonal-view, flow fields about tnree-aimensional wings

flow visualization. The wing was must include both qualitative and

constructed from a NACA 0015 airfoil quantitative results. For all data

section with a flat endplate fasnoned to collection, static tests were conducted as

the airfoil shape. The wing was mounted a baseline condition for comparisons with
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examined, the leading edge vortex size
Tip diminishes. These photographs show the
Tip spatial characteristics of the leading

Exnion edge and wingtip vortices across the span

........... .- of the ing.

?orts To illustrate tne size and convective

characteristics of the leading edge
NOT TO SCALE vortex, Fig. 3 snows flow visualizations

for a complete pitching cycle in 10%
increments at S - 0.67. At the maximum

Win angle of attack, * - 0.0, the shear layer
vorticity is coalescing into distinct
vortex patterns. At 0 - 0.2 and 0.3, a
large leading edge vortex is observed near

Splitter the leading edge and a secondary vortex is
Plate muntin seen downstream near the midchord

Platfors position. As the cycle continues to pitch
- .the win& toward the minimum angle of

attack, 0 - 0.3 to 0.5, the leading edge
vortex becomes less distinct and is pushed
toward the trailing edge by the freestream
flow. From 0 - 0.6 to 0.9, the leading

oo Mach~anis r ' edge vortex is shed from the trailing edge
Iand the flow reattaches to the surface of

the wing.
Tnnel Vall To illustrate the cnordwise and

Stopper spanwise location of the leading edge
Hotor vortex for the first half of the pitching

cycle, a planform view of the wing is
shown in Fig. 4. The leading edge vortex
positions are shown at 0 - 0.0, 0.25 and
0.5. The leading edge vortex convection
is retarded near the wingtip, and, the

Fig. I. Model Schematic and Pressure vortex core positions s-em to focus at an
Port Location apex near the leading edge at the

wingtIpLL,20.

the dynamic (sinusoidal oscillation) data.
The flow visualization technique . - - -

determined the position and size of the 0
vortex formations throughout the pitching
cycle. The leading edge and wingtip vortex 1 3 0O.2S
effects and interactions were recorded. a 4).O
Quantitative data included hotwire
velocity measurements. The velocity 5- 1.33C
fluctuations readily indicate the cyclic
position and magnitude of the unsteady
vortices. The surface pressure data also 3-1.O0C
indicate the position and transient V_.
passage of the vortices as well as the
nature or existing vortex-vortex 3-O.67C
interactions. Ali three data collection
techniques must be utilized to fully
define the flow. 0-0.33C

Flow Visualization WING TIP

A spanwise visualization of the Fig. 4. Planform of Leading Edge Vortex
leading edge and wingtip vortices produced Position, k - 1.0
about the wing at 0 - 0.3 is shown in Fig.
2. With the smoke sheet introduced at the
wingtip, S - 0.00, a dominant wingtip Hotwire Anemometry
vortex is observed. At S - 0.33, the flow
above the wing appears attached with a Hotwire velocity profiles for two
shear layer present on the surface of the complete pitching cycles of the wing arewing. As more inboard locations are shown in Fig. 5. Four spanwise locations

investigated, S = 0.5, a leading edge are shown to illustrate the velocity
vortex is torming with the vortex center differences due to span location. The
near the quarterchord. The size of the hotwire probe is located at C - 0.17 to
leading edge vortex increases with inboard capture the velocity fluctuations
location and reaches a maximum at S = associated with the formation and
1.00. As the more inboard locations are convection of the leading edge vortex.
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+ 0 - 0.5

b 0.2 , .

03

-0.4 0.9

Fig. 3. Photograptlic Comparisons Over One Pitching Cycle,
-1.0, S = 0.67
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S 0.0( s = 0. 17

S = 0.33 S = 0.50

= o.6; S 1.00

Fig. 2. Spanwise Visualization

S=1 .3- Comparisons, k = 1.0, 0.3

Velocity profiles at other chord locations S = 0.67 and 1.00, tne probe senses the
show less pronounced fluctuations in tne circumferential and core velocities of a

regions of more diffuse vortex structures. large, cohesive leading edge structure.

Tne nigher velocity peaks are coincidental Early in the pitching cycle, O = 0.0, the
witn the circumferencial velocities of the hotwire probe records the high velocities
paising leading edge vortices and the of the circumference of the initiating
lower measured velocities are indicative leading edge vortex. As the vort..x forms,

ot the vortex inner cure passage. Near the core is located at the probe position

the wingtip, S - 0.00, tne velocity and the local velocities are quite low at
fluctuatioris are due to the wingtip vortex the center of the vortex, 0 - 0.25. As
and are not as significant as at the more tne vortex convects across the surface of
inboard locations wnere the leading edge the wing, the probe records the velocity

vortex is dominant. At the next inboard recovery to the freestream and higher

position, S - 0.33, the probe records tne value associated with the flow

peak velocities associated with the reattacnment ooserved in the flow
circumference and core of tne leading edge visualizations for = 0.4 to 0.9. At the

vortex. The probe appears to sense the beginning of a new pitching cycle, 6 -
upper portion of the small, cohesive 1.0, the local velocity is again at a peak

leading edge structure. Further inboard, value.
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2.5- a.0.0C s-o.eic

2.0 .

1.5-

1.0-

0.6-

0.0. I I I

2.5 8-0.33C 91.00C

2.0-

1.5-

V/V 0

1.0

0.6

0.0 , I
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Fig. 5. Velocity Profiles Across Span, k = 1.0, C - 0.17

Surface Pressure

Pressure data collected on the leading edge vortex is indicated since thesurface of the wing confirms and pressure ridges do not move to the rightquantifies flow characteristics observed in the data plot as the pitching cyclewith the previously discussed experimental progresses. The peaks occur at repeatable
techniques. Surface pressure measurements intervals in the cycle coincident with theat the spanwise pressure port locations passage of vortices as observed during
are recorded throughout the pitching cycle flo visualization tests. At S - 0.6, theand multiple runs are averaged to obtain plotted pressure peaks remain high overthe plots. The pressure coefficient data more of the chordleng n indicating thefor two reduced frequency values of 0.6 pressure of larger vortices that encompass
and 1.0 are shown in Fig. 6. The pressure more of the forward wing surface. Again,coefficient peaks shows the high values very little surface convection is
associated with the passage ;f cohesive observed. At S = 0.8, the peak in plottedvortex structures. Therefore, the vortex pressure coefficient occurs aft of thestrength and position can be traced across quarterchord position. A slight snift inthe chord atd span of the wing by the pressure ridge indicates some vortexobserving the pressure coefficient convection, however, only insignificantdistribution for complete cycles of tne pressure fluctuations are noted at the
pitching motion. trailing edge. The highest pressure peaks

are observed at S - 1.0 and are locatedAt span location S - 0.4 for the k - nearly at the midchord position. Some
0.6 data, high cyclic peaks in the convection is noted by the shift of thepressure profiles near the wing leading plotted pressure ridge, but only a small
edge indicate the presence of the leading pressure peak is recorded at the trailingedge vortex. Downstream from these peaks, edge. More inboard positions, recorded
the absolute value of the pressure but not shown, indicate smaller pressure
coefficient decreases. At this span peaks, more snift in the pressure ridges
location, no surface convection of the and higher peaks at the trailing edge.
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Cp vs i/c vs Cp vs x/c vs 0
k=0.6 S=0.4 kO6 S.

1.0 .

-0.0 000

k=0.6 S=0.8

l*10

0 000 
0

k 1.0 S=0.4 k 1.0 S 0.6

(10

k . S 0k 10 S 1.0

00 00.0 0

Fig. 6 Pressure plots
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Cn vso
C! k -0.6

= S = 0.8
- S = 0.6
-MS 1 .0

x - S - 0.4

0.0 1.0

Fig. 7. Normal Force Coefficients, k - 0.6

The k - 1.0 data (note the scale Discussion
change on the pressure coefficient axis)
show higher peaks in the pressure The three data collection techniques
coefficient data. At tne S - 0.4 of flow visualization, hotwire anemouecry
position, the peaks are very high and are and surface pressure measurements each
confined to the most forward portion of illustrate characteristics ot an unsteady
the wing chordlength. No convection is flow field. In combination, these
observed and the coefficient data remains investigations define and verify
reasonably constant across most of tne hypotheses which can lead to a complete
chordlength tnrougout tne pitching cycle, understanding of the flow aOout an
As more inboard positions are examined, oscillating planar wing. The location,
the pressure peaks encompass more of tne size and velocity ot the leading edge
wing surface and shift aft on the chord. vortex and the resulting pressure
At S = 0.8 and 1.0, more vortex convection distribution about the wing can now be
is noted by the shift in the plotted discussed. The effect of span location on
pressure ridge as the pitching cycle these quantities is also known.
progresses.

The flow visualization experiments
As a comparison of cyclic forces "rovided the initial qualitative data on

produced by these unsteady flows, Fig. 7 the unsteady flow field about this wing.
shows the variation of normal force The leading edge vortex forms during the
coefficient with pitching cycle. The four high angle of attack phase of tne pitcning
traces are for different span locatiors at cycle and coalesces into a cohesive
k - 0.6. These plots show maximum ;.ad structure near the leading edge ot the
minimum values for each span locat-on at wing. As the cycle progresses, the vortex
nearly the same point in the pitcning becoues larger and then less distinct as
cycle. The normal force coefficient it moves toward the trailing edge of the
fluctuations are greater for ne S = 0.4 wing. The leading edge vortex size was
tnan for the S - 0.6 but the greatest dependent on proximity to the wingtip and
variations occur at S = 1.:. The mean the wingtip vortex. The leading edge
value of the force coefficient at S - 1.0 structure was small near the wingtip and
is approximately 1.3. The mean value larger near the S - 1.0 position. Further
increases with more inboard span location, inboard, the size decreased with span
The relative magnitudes of the k - 1.0 location. Near tne wingtip, the leading
data snow the same trends as the k - 0.6 edge vortex showed little, if any,
data. The maxima and minima of the tendency to traverse across the wing
fluctuations for tle k - 1.0 data are surface. Further inboard, this vortex was
greater, as predicted by the pressure larger and demonstrated more convection
coefficient plots.
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tendencies but was less distinct as it of the canard as it goes through pitching
passed toward ce trailing. motions

2 5
. Controlling this unsteady

phenomenon tor lift enhancement may be
The hotwire data confirmed the feasible on future aircratt.
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wing and allowed quantitative analysis of
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